

CONTENTS

Credits	
Introduction	13
Why be sustainable?	
CHAPTER 1 DIFFERENT THINGS TO DIFFERENT PEOPLE	15
What to do	16
Know your land	
A) Evaluating a site	
B) Land carrying capacity	21
C) Assessing land capability	
An indication of sustainability	23
CHAPTER 2 SUSTAINABLE CONCEPTS	_24
Natural farming	
Organic farming	
Whole farm planning	
Systems thinking in sustainable agriculture	26
Permaculture	26
Minimal cultivation	
No dig techniques	30
Biodynamics	
Crop rotation	
Seed saving	
Urban farming	
Hydroponics	
Aquaponics	
Vertical farming	
Environmentally friendly farming	
Checklist of sustainability elements	
Sustainable agriculture around the globe	
Case study: target 10, a model for sustainable agricultural development	
CHAPTER 3 SOILS	43
Introduction	43
Growing media	44
Soils	44
Problems with soils	
Major types of soil problems	

1) Loss of soil fertility	
2) Erosion	
3) Salinity	
4) Soil sodicity	
5) Soil structural decline	
6) Soil acidification	
7) Build-up of dangerous chemicals	
Improving soils	
Adding organic matter	
Cultivation techniques	
Conservation tillage	
Plant nutrition	
Soil pH	
Choosing the right fertiliser	
Nutrient deficiencies	
Natural fertilisers	
Types of natural fertilisers to use	63
A look at organic fertilisers	
Soil life	
Earthworms	
Mycorrhiza	66
Nitrogen fixing	
Composting	66
The composting process	<u></u> 67
Guidelines for using compost	
Mulches	
General rules for mulching	
CHAPTER 4 WATER MANAGEMENT	
Water usage	
Methods of water storage	
Rainwater collection & storage	
Water tanks	
Bore water	
Farm dams	78
Livestock water requirements	
Water quality	
Problems with water	

Mosquitoes	
Willows and waterways	
Algal blooms	
Livestock contamination	
Flood	
Water quality	
Salinity	
Testing water salinity	
Treating saline water	
Management options	
Long-term strategies	
Tastes and odours	
Reed beds	
Water saving measures	
Recycling household water	
Using farm/waste water	
Water wastage	
Evaporation	
Seepage	
Runoff	
Overspray	
Scheduling	
Recycling waste water	
Swales and keylines	
Swales	
Keyline design	
Irrigation systems	94
Irrigation system design	
Steps in the design process	
Maintenance procedures and scheduling	
Periodic inspections	
Routine upkeep	
Contingent work	
Scheduling work	<u></u> 97
Surface or flood irrigation	
Border check system	
Hillside flooding	
Furrow irrigation	

Sprinkler irrigation	
A) wind velocity and wetting pattern	
B) drop size	99
C) rotational speed	99
D) evaporation	
Innovations in water management and precision agriculture procedures and s	scheduling99
CHAPTER 5 PEST AND DISEASE CONTROL	100
Use of pesticides	
Pest management and systems thinking	
Integrated pest management	
Biointensive integrated pest management	
Pesticides: a vicious cycle	
Controlling pests and diseases in plants	
Cultural controls	
Physical controls	
Sprays and dusts	
Pesticides	
Fungicides	
Chemical control of pests and diseases in plants	
Insecticides	
Fungicides	
Chemical application techniques	112
Biological controls	112
Antagonistic organisms	
Advantages of bio-control methods	
Disadvantages of biocontrol methods	
Predators	
Attracting parasites	
Beneficial plants	115
Trap or decoy plants	
Companion planting	
Plants which affect the soil	118
Pest control plants	
Legislation	
Chemical use	
Quarantine	
Genetic engineering	

Pest and disease control in animals	
CHAPTER 6 SUSTAINABLE WEED CONTROL & CULTIVATION	129
What is a weed?	
Controlling weeds	
Ways to control weeds without chemicals	
Check soil condition	
Minimise sources of weed seeds	131
Cultivation	132
Mulching	
Biological weed control	
Grazing	
Goats	
Other grazing animals	
Chemical control of weeds	
Herbicides	
Contact herbicides	136
Woody weed herbicides	136
Residual herbicides	136
Pre-emergent herbicide	136
Selective herbicides	136
Herbicide additives	136
Plants which take over	138
Environmental weeds	
Some plants to avoid	139
Noxious weeds	141
CHAPTER 7 FARM MANAGEMENT	142
Changing an existing farm to a sustainable property	143
The rodale institute conversion experiment	
New farm products	
Pre-planning	145
Considerations	146
Monitoring and reviewing the farm system	148
Socioeconomic considerations	149
Profitability	149
Social aspects	
Production planning	
Economy of scale	

Materials	
Equipment	
Value adding	
Organic certification schemes	
Contingencies and seasonal variations	
The expected	
The unexpected	
Types of problems	
Planning for drought	
Excessive water	
What other planning do i need?	
CHAPTER 8 GROWING AND HARVESTING PLANTS	159
Selection criteria for plants	
Grain and other broad acre crops	
Monoculture	
Crop rotation	
Row crops	
Cover crops	
Cover crop guidelines/principles	
Legume cover crops	
Types of cover crops	
Ways of using a cover crop	
Hay and silage	
Silage production	
Silage timing	
Quality control	
Hay	
Hydroponic fodder	
CHAPTER 9 TREES, FODDER AND OTHER PLANTS	
Important reasons for having trees on farms	
Agroforestry	
Profitability	
Design	
Pruning/thinning	182
Harvesting	
Timber trees	
Paulownia	

Pine plantations	
Eucalyptus	
Acacia	
Fodder trees	
Types of trees	
Windbreaks	
Windbreak design considerations	
Windbreak plants	
Firebreaks	
Fire-prone areas	
How to arrange plants	
Maintenance of firebreak species	
Habitat corridors for wildlife	
Why create a wildlife corridor?	
Benefits of wildlife corridors	
Where to establish wildlife corridors	
Types of wildlife corridors	
Wildlife corridor design	
Edge effects	
Tree planting methods	
Preparing the site	
Planting seedlings	
Direct seeding	
CHAPTER 10 SUSTAINABLE ANIMAL MANAGEMENT	198
Possible problems of livestock production	
Breed selection	
Stocking rates	
Fencing	
Production systems	200
Land care practices	202
Pastures	
Sustainable pasture varieties	203
Saltbush	203
How much grazing?	204
How long to graze?	205
Grazing methods	206
Other areas for grazing	207

Guidelines for raising different livestock	208
Alpacas	
Aquaculture (freshwater)	210
Cattle	211
Emus	213
Goats	213
Horses	
Ostriches and emus	215
Poultry (chickens)	216
Pigs	
Sheep	
CHAPTER 11 TECHNOLOGICAL APPLICATIONS	223
Introduction	223
Precision agriculture	
Machines and tools	
Tractors	
Drones	
Wearable technology	
Robotics	229
Computer technology	230
Fertilisers and soil conditioners	231
Seaweed extracts	231
Fish fertilisers	
Rock dusts	232
Chemical pesticides and herbicides	
Soil microbes	235
New plants & animals	236
Biotechnology & sustainable agriculture	236
Modifying organisms genetically	
Cloning	
Problems for biotechnology	240
Nuclear and isotopic techniques	
Further reading and study	
More ebooks available	
Courses available	241

THE AUTHOR

John Mason graduated from Burnley Horticultural College, Australia, in 1971 with a Diploma in Horticultural Science. In the early 1970's and again in the early 80's, he owned and operated small retail/wholesale nurseries. During the mid 70's, he developed nurseries for two municipalities while working as their Parks Manager. Since 1979, he has been principal of the Australian Correspondence Schools, an international distance education college offering more than 200 different horticultural courses, and with students spread across more than 150 countries. John has written hundreds of newspaper articles and more than a 150 books, and has been editor and principal writer of four Australian magazines (including *Your Backyard*, and *Garden Guide*).

He is a board member of the Australian Garden Council, and an active member of the Australian Institute of Horticulture, Queensland Nursery Industry Association and the International Plant Propagators Society. John is also a fellow of the Australian Institute of Horticulture, the Chartered Institute of Horticulture (U.K.) and Parks and Leisure Australia.

The information in this book is derived from a broad cross-section of resources (research, reference materials and personal experience) from the authors and editorial assistants in the academic department of ACS Distance Education. It is, to the best of our knowledge, composed as an accurate representation of what is accepted and appropriate information about the subject, at the time of publication.

The authors fully recognise that knowledge is continually changing, and awareness in all areas of study is constantly evolving. As such, we encourage the reader to recognise that nothing they read should ever be considered to be set in stone. They should always strive to broaden their perspective and deepen their understanding of a subject, and before acting upon any information or advice, should always seek to confirm the currency of that information, and the appropriateness to the situation in which they find themselves.

As such, the publisher and author do not accept any liability for actions taken by the reader based upon their reading of this book.

Published by:

ACS Distance Education P.O. Box 2092, Nerang MDC, Queensland, Australia, 4211 admin@acs.edu.au www.acsbookshop.com

UK & European Representative: ACS Distance Education UK P O Box 4171, Stourbridge, DY8 2WZ, United Kingdom admin@acsedu.co.uk www.acsebooks.com

ISBN: 978-0-6483232-7-3

CREDITS

Research and Editorial Assistants over all editions of this book:

Iain Harrison Dip. Hort. Sc., Cert

Supn. Peter Douglas Dip.Animal.Husb.

Paul Plant B.App.Sc.(Hort)

Andrew Penney B.Soc.Sc.

Kathy Travis B.Sc.Ag., Grad.Dip.Bus., PDC

Naomi Christian B.Sc.Botany, B.App.Sc.(Hons)

Jacinda Cole B.Sc., Cert.Hort., M.Psych.

Mark James B.App.Sc., Dip.App.Sc.

Alison Bundock Ass.Dip.Hort., B.A., Grad.Dip.Hort.

Rosemary Lawrence B.Sc., P.Grad.Dip Hort.

Lisa Flower B.A.

Adriana Fraser Adv.Cert.Hort., Adv.Dip.Hort.

Marie Beerman B.Hort., M.Hort., PDC

Thanks to the following organisations for information supplied:

The National Association for Sustainable Agriculture (NASAA)

National Farmers Federation

Victorian Institute for Dryland Agriculture

Australian Wiltshire Horn Sheep Breeders Association

Australian Finnsheep Breeders Association

Llama Association of Australia

The Emu Producers Association of Victoria

The Australian Ostrich Association

Victorian Dept. Natural Resources and Environment (Catchment Management & Sustainable Agriculture)

INTRODUCTION

First there was subsistence farming, and then there was a technological revolution. Developments in machinery and chemicals allowed us to clear and cultivate land rapidly, feed plants and animals quicker to grow them faster, and kill pests or diseases quickly. These newfound abilities seemed like a godsend to mankind and throughout the 20th century we used them to their fullest; generally, with little regard to any unforeseen repercussions.

Gradually, time has revealed a variety of problems caused by this modern agricultural development, including chemical residues affecting plant and animal life on land and in the sea, soil degradation in the form of soil structural decline, erosion, salinity, soil acidification, loss of fertility, nutrient loading of waterways, dams and lakes, and more.

In the 21st century as concern about our environment grows, there is an obvious move towards more sustainable farming practices.

Sustainable farming is in essence concerned with anything that affects the sustainability of a farm. You cannot keep farming a property indefinitely if there is degradation of resources (environmental resources, financial resources, equipment, machinery, materials, or any other resources). In the short to medium term, the problem of sustainability is overwhelmingly a financial one; but in the long term, environmental sustainability will have perhaps more impact upon the whole industry than anything else.

Why Be Sustainable?

If we can't sustain agricultural production, we will eventually see a decline in production; hence a decline in food and other supplies. There is no escaping the fact that people need agricultural products to survive: for food, clothing, etc. Science may be able to introduce substitutes (e.g. synthetic fibres) but even the raw materials to make these will generally be limited. As the world's population increases, or at best remains stable in some places, demand for agricultural produce increases accordingly. Poorly maintained farms produce less in terms of quantity and quality. Profitability decreases mean that surplus money is no longer available for repair and improvements. Farmland can become contaminated with chemical residues, weeds or vermin. The amount of vegetation produced (i.e. the biomass) may reduce, resulting in less production of carbon dioxide and greater susceptibility to environmental degradation.

We have created a world that relies heavily on technology to produce the food needed to sustain its human population. There is a worldwide dilemma. To abandon modern farming methods could result in worldwide famine, but to continue current practices will almost certainly result in long-term degradation of farmland and, eventually, the inability to sustain even current human population levels without even considering future population increases.

Who Should Be Concerned?

Everyone needs to be concerned about a decline in farm production potential. The farmer, his family, and workers are always affected first. An unsustainable farm is simply not worth persisting with and any farm which heads this way must eventually be abandoned or redeveloped to become sustainable. This book is about foreseeing and understanding such problems and addressing them before it is too late.

CHAPTER 1 DIFFERENT THINGS TO DIFFERENT PEOPLE

Sustainable farming means different things to different people however they all share a common concern in preventing the degradation of some aspect of the farm.

Some farmers may be primarily concerned with degradation of natural resources (e.g. their land is becoming less productive). Other farmers may be more concerned about degradation of profitability, which could be due to increased labour or material costs, poor planning, or simply changing conditions in the economy. The causes and the solutions to such problems are different in each situation.

Sustainable agriculture is a philosophy: it is a system of farming. It empowers the farmer to work with natural processes to conserve resources such as soil and water, whilst minimising waste and environmental impact. At the same time, the "agro-ecosystem" becomes resilient, self-regulating and profitability is maintained.

Consider climate when deciding where and what to farm